The Challenge & Limits of SDMs

  • Critical Challenge: Predicting species’ responses to global environmental change

  • Usual Tool: Species Distribution Models (SDMs).

  • Limitations of SDMs:

Improving the Forecast

What Traditional SDMs Do

DRMs: A Mechanistic Approach

Case Studies

Forecasts Visual Comparison

Environment-Dependent Demographic Rates

Concluding remarks

  • Summary: The drmr substantially lowers the barrier for ecologists to use the DRM in their applications.

  • Impact: A user-friendly tool which enables:

    • Testing which mechanistic hypotheses are more likely to drive species distributions changes;
    • Generate more robust ecological forecasts
  • Availability: drmr is open-source and will be available on GitHub once the review process is over.

Acknowledgments

References

Fordham, D. A., Haythorne, S., Brown, S. C., Buettel, J. C., and Brook, B. W. (2021), poems: R package for simulating species’ range dynamics using pattern-oriented validation,” Methods in Ecology and Evolution, 12, 2364–2371. https://doi.org/https://doi.org/10.1111/2041-210X.13720.
Guisan, A., and Thuiller, W. (2005), “Predicting species distribution: Offering more than simple habitat models,” Ecology letters, Wiley Online Library, 8, 993–1009. https://doi.org/https://doi.org/10.1111/j.1461-0248.2005.00792.x.
Malchow, A.-K., Bocedi, G., Palmer, S. C. F., Travis, J. M. J., and Zurell, D. (2021), “RangeShiftR: An r package for individual-based simulation of spatial eco-evolutionary dynamics and species’ responses to environmental changes,” Ecography, 44, 1443–1452. https://doi.org/10.1111/ecog.05689.
Markowska, K., Malinowska, K., and Kuczyński, L. (2025), “Rangr: An r package for mechanistic, spatially explicit simulation of species range dynamics,” Methods in Ecology and Evolution, 16, 468–476. https://doi.org/10.1111/2041-210X.14475.
Pagel, J., and Schurr, F. M. (2012), “Forecasting species ranges by statistical estimation of ecological niches and spatial population dynamics,” Global Ecology and Biogeography, 21, 293–304. https://doi.org/https://doi.org/10.1111/j.1466-8238.2011.00663.x.
Urban, M. C., Bocedi, G., Hendry, A. P., Mihoub, J.-B., Pe’er, G., Singer, A., Bridle, J. R., Crozier, L. G., Meester, L. D., Godsoe, W., Gonzalez, A., Hellmann, J. J., Holt, R. D., Huth, A., Johst, K., Krug, C. B., Leadley, P. W., Palmer, S. C. F., Pantel, J. H., Schmitz, A., Zollner, P. A., and Travis, J. M. J. (2016), “Improving the forecast for biodiversity under climate change,” Science, 353, aad8466. https://doi.org/10.1126/science.aad8466.